ax.metrics¶
Branin¶
-
class
ax.metrics.branin.AugmentedBraninMetric(name, param_names, noise_sd=0.0, lower_is_better=None)[source]¶
Factorial¶
-
class
ax.metrics.factorial.FactorialMetric(name, coefficients, batch_size=10000, noise_var=0.0)[source]¶ Bases:
ax.core.metric.MetricMetric for testing factorial designs assuming a main effects only logit model.
Hartmann6¶
L2 Norm¶
Noisy Functions¶
-
class
ax.metrics.noisy_function.NoisyFunctionMetric(name, param_names, noise_sd=0.0, lower_is_better=None)[source]¶ Bases:
ax.core.metric.MetricA metric defined by a generic deterministic function, with normal noise with mean 0 and mean_sd scale added to the result.