ax.plot¶
Plots¶
Base¶
-
class
ax.plot.base.AxPlotTypes[source]¶ Bases:
enum.EnumEnum of Ax plot types.
-
BANDIT_ROLLOUT= 4¶
-
CONTOUR= 0¶
-
GENERIC= 1¶
-
INTERACT_CONTOUR= 3¶
-
SLICE= 2¶
-
-
class
ax.plot.base.PlotData[source]¶ Bases:
tupleStruct for plot data, including both in-sample and out-of-sample arms
-
in_sample¶ Alias for field number 1
-
metrics¶ Alias for field number 0
-
out_of_sample¶ Alias for field number 2
-
status_quo_name¶ Alias for field number 3
-
-
class
ax.plot.base.PlotInSampleArm[source]¶ Bases:
tupleStruct for in-sample arms (both observed and predicted data)
-
context_stratum¶ Alias for field number 6
-
name¶ Alias for field number 0
-
parameters¶ Alias for field number 1
-
se¶ Alias for field number 4
-
se_hat¶ Alias for field number 5
-
y¶ Alias for field number 2
-
y_hat¶ Alias for field number 3
-
Color¶
-
class
ax.plot.color.COLORS[source]¶ Bases:
enum.EnumAn enumeration.
-
CORAL= (251, 128, 114)¶
-
LIGHT_PURPLE= (190, 186, 218)¶
-
ORANGE= (253, 180, 98)¶
-
PINK= (188, 128, 189)¶
-
STEELBLUE= (128, 177, 211)¶
-
TEAL= (141, 211, 199)¶
-
Contour Plot¶
-
ax.plot.contour.interact_contour(model, metric_name, generator_runs_dict=None, relative=False, density=50, slice_values=None, lower_is_better=False)[source]¶ Create interactive plot with predictions for a 2-d slice of the parameter space.
Parameters: - model (
ModelBridge) – ModelBridge that contains model for predictions - metric_name (
str) – Name of metric to plot - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – A dictionary {name: generator run} of generator runs whose arms will be plotted, if they lie in the slice. - relative (
bool) – Predictions relative to status quo - density (
int) – Number of points along slice to evaluate predictions. - slice_values (
Optional[Dict[str,Any]]) – A dictionary {name: val} for the fixed values of the other parameters. If not provided, then the status quo values will be used if there is a status quo, otherwise the mean of numeric parameters or the mode of choice parameters. - lower_is_better (
bool) – Lower values for metric are better.
Return type: - model (
-
ax.plot.contour.plot_contour(model, param_x, param_y, metric_name, generator_runs_dict=None, relative=False, density=50, slice_values=None, lower_is_better=False)[source]¶ Plot predictions for a 2-d slice of the parameter space.
Parameters: - model (
ModelBridge) – ModelBridge that contains model for predictions - param_x (
str) – Name of parameter that will be sliced on x-axis - param_y (
str) – Name of parameter that will be sliced on y-axis - metric_name (
str) – Name of metric to plot - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – A dictionary {name: generator run} of generator runs whose arms will be plotted, if they lie in the slice. - relative (
bool) – Predictions relative to status quo - density (
int) – Number of points along slice to evaluate predictions. - slice_values (
Optional[Dict[str,Any]]) – A dictionary {name: val} for the fixed values of the other parameters. If not provided, then the status quo values will be used if there is a status quo, otherwise the mean of numeric parameters or the mode of choice parameters. - lower_is_better (
bool) – Lower values for metric are better.
Return type: - model (
Model Diagnostic Plot¶
-
ax.plot.diagnostic.interact_batch_comparison(observations, experiment, batch_x, batch_y, rel=False, status_quo_name=None)[source]¶ Compare repeated arms from two trials; select metric via dropdown.
Parameters: Return type:
-
ax.plot.diagnostic.interact_cross_validation(cv_results, show_context=True)[source]¶ Interactive cross-validation (CV) plotting; select metric via dropdown.
Note: uses the Plotly version of dropdown (which means that all data is stored within the notebook).
Parameters: Return type:
-
ax.plot.diagnostic.interact_empirical_model_validation(batch, data)[source]¶ Compare the model predictions for the batch arms against observed data.
Relies on the model predictions stored on the generator_runs of batch.
Parameters: - batch (
BatchTrial) – Batch on which to perform analysis. - data (
Data) – Observed data for the batch.
Return type: Returns: AxPlotConfig for the plot.
- batch (
-
ax.plot.diagnostic.tile_cross_validation(cv_results, show_arm_details_on_hover=True, show_context=True)[source]¶ Tile version of CV plots; sorted by ‘best fitting’ outcomes.
Plots are sorted in decreasing order using the p-value of a Fisher exact test statistic.
Parameters: - cv_results (
List[CVResult]) – cross-validation results. - include_measurement_error – if True, include measurement_error metrics in plot.
- show_arm_details_on_hover (
bool) – if True, display parameterizations of arms on hover. Default is True. - show_context (
bool) – if True (default), display context on hover.
Return type: - cv_results (
Helpers¶
-
ax.plot.helper.get_fixed_values(model, slice_values=None)[source]¶ Get fixed values for parameters in a slice plot.
If there is an in-design status quo, those values will be used. Otherwise, the mean of RangeParameters or the mode of ChoiceParameters is used.
Any value in slice_values will override the above.
Parameters: - model (
ModelBridge) – ModelBridge being used for plotting - slice_values (
Optional[Dict[str,Any]]) – Map from parameter name to value at which is should be fixed.
Returns: Map from parameter name to fixed value.
Return type: Dict[str,Union[str,bool,float,int,None]]- model (
-
ax.plot.helper.get_grid_for_parameter(parameter, density)[source]¶ Get a grid of points along the range of the parameter.
Will be a log-scale grid if parameter is log scale.
Parameters: - parameter (
RangeParameter) – Parameter for which to generate grid. - density (
int) – Number of points in the grid.
Return type: ndarray- parameter (
-
ax.plot.helper.get_plot_data(model, generator_runs_dict, metric_names=None)[source]¶ Format data object with metrics for in-sample and out-of-sample arms.
Calculate both observed and predicted metrics for in-sample arms. Calculate predicted metrics for out-of-sample arms passed via the generator_runs_dict argument.
In PlotData, in-sample observations are merged with IVW. In RawData, they are left un-merged and given as a list of dictionaries, one for each observation and having keys ‘arm_name’, ‘mean’, and ‘sem’.
Parameters: - model (
ModelBridge) – The model. - generator_runs_dict (
Dict[str,GeneratorRun]) – a mapping from generator run name to generator run. - metric_names (
Optional[Set[str]]) – Restrict predictions to this set. If None, all metrics in the model will be returned.
Return type: Tuple[PlotData,List[Dict[str,Union[float,str]]],Dict[str,Dict[str,Union[str,bool,float,int,None]]]]Returns: A tuple containing
PlotData object with in-sample and out-of-sample predictions.
List of observations like:
{'metric_name': 'likes', 'arm_name': '0_1', 'mean': 1., 'sem': 0.1}.
Mapping from arm name to parameters.
- model (
-
ax.plot.helper.get_range_parameter(model, param_name)[source]¶ Get the range parameter with the given name from the model.
Throws if parameter doesn’t exist or is not a range parameter.
Parameters: - model (
ModelBridge) – The model. - param_name (
str) – The name of the RangeParameter to be found.
Returns: The RangeParameter named param_name.
Return type: RangeParameter- model (
-
ax.plot.helper.get_range_parameters(model)[source]¶ Get a list of range parameters from a model.
Parameters: model ( ModelBridge) – The model.Returns: List of RangeParameters.
Return type: List[RangeParameter]
Rendering¶
-
ax.plot.render.plot_config_to_html(plot_config, plot_module_name='ax.plot', plot_resources={<AxPlotTypes.CONTOUR: 0>: 'contour.js', <AxPlotTypes.GENERIC: 1>: 'generic_plotly.js', <AxPlotTypes.INTERACT_CONTOUR: 3>: 'interact_contour.js', <AxPlotTypes.SLICE: 2>: 'slice.js', <AxPlotTypes.BANDIT_ROLLOUT: 4>: 'bandit_rollout.js'}, inject_helpers=False)[source]¶ Generate HTML + JS corresponding from a plot config.
Return type: str
Scatter Plots¶
-
ax.plot.scatter.interact_fitted(model, generator_runs_dict=None, rel=True, show_arm_details_on_hover=True, show_CI=True)[source]¶ Interactive fitted outcome plots for each arm used in fitting the model.
Choose the outcome to plot using a dropdown.
Parameters: - model (
ModelBridge) – model to use for predictions. - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – a mapping from generator run name to generator run. - rel (
bool) – if True, use relative effects. Default is True. - show_arm_details_on_hover (
bool) – if True, display parameterizations of arms on hover. Default is True. - show_CI (
bool) – if True, render confidence intervals.
Return type: - model (
-
ax.plot.scatter.lattice_multiple_metrics(model, generator_runs_dict=None, rel=True, show_arm_details_on_hover=False)[source]¶ Plot raw values or predictions of combinations of two metrics for arms.
Parameters: - model (
ModelBridge) – model to draw predictions from. - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – a mapping from generator run name to generator run. - rel (
bool) – if True, use relative effects. Default is True. - show_arm_details_on_hover (
bool) – if True, display parameterizations of arms on hover. Default is False.
Return type: - model (
-
ax.plot.scatter.plot_fitted(model, metric, generator_runs_dict=None, rel=True, custom_arm_order=None, custom_arm_order_name='Custom', show_CI=True)[source]¶ Plot fitted metrics.
Parameters: - model (
ModelBridge) – model to use for predictions. - metric (
str) – metric to plot predictions for. - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – a mapping from generator run name to generator run. - rel (
bool) – if True, use relative effects. Default is True. - custom_arm_order (
Optional[List[str]]) – a list of arm names in the order corresponding to how they should be plotted on the x-axis. If not None, this is the default ordering. - custom_arm_order_name (
str) – name for custom ordering to show in the ordering dropdown. Default is ‘Custom’. - show_CI (
bool) – if True, render confidence intervals.
Return type: - model (
-
ax.plot.scatter.plot_multiple_metrics(model, metric_x, metric_y, generator_runs_dict=None, rel=True)[source]¶ Plot raw values or predictions of two metrics for arms.
All arms used in the model are included in the plot. Additional arms can be passed through the generator_runs_dict argument.
Parameters: - model (
ModelBridge) – model to draw predictions from. - metric_x (
str) – metric to plot on the x-axis. - metric_y (
str) – metric to plot on the y-axis. - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – a mapping from generator run name to generator run. - rel (
bool) – if True, use relative effects. Default is True.
Return type: - model (
-
ax.plot.scatter.plot_objective_vs_constraints(model, objective, subset_metrics=None, generator_runs_dict=None, rel=True)[source]¶ Plot the tradeoff between an objetive and all other metrics in a model.
All arms used in the model are included in the plot. Additional arms can be passed through via the generator_runs_dict argument.
Parameters: - model (
ModelBridge) – model to draw predictions from. - objective (
str) – metric to optimize. Plotted on the x-axis. - subset_metrics (
Optional[List[str]]) – list of metrics to plot on the y-axes if need a subset of all metrics in the model. - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – a mapping from generator run name to generator run. - rel (
bool) – if True, use relative effects. Default is True.
Return type: - model (
-
ax.plot.scatter.tile_fitted(model, generator_runs_dict=None, rel=True, show_arm_details_on_hover=False, show_CI=True)[source]¶ Tile version of fitted outcome plots.
Parameters: - model (
ModelBridge) – model to use for predictions. - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – a mapping from generator run name to generator run. - rel (
bool) – if True, use relative effects. Default is True. - show_arm_details_on_hover (
bool) – if True, display parameterizations of arms on hover. Default is False. - show_CI (
bool) – if True, render confidence intervals.
Return type: - model (
Slice Plot¶
-
ax.plot.slice.plot_slice(model, param_name, metric_name, generator_runs_dict=None, relative=False, density=50, slice_values=None)[source]¶ Plot predictions for a 1-d slice of the parameter space.
Parameters: - model (
ModelBridge) – ModelBridge that contains model for predictions - param_name (
str) – Name of parameter that will be sliced - metric_name (
str) – Name of metric to plot - generator_runs_dict (
Optional[Dict[str,GeneratorRun]]) – A dictionary {name: generator run} of generator runs whose arms will be plotted, if they lie in the slice. - relative (
bool) – Predictions relative to status quo - density (
int) – Number of points along slice to evaluate predictions. - slice_values (
Optional[Dict[str,Any]]) – A dictionary {name: val} for the fixed values of the other parameters. If not provided, then the status quo values will be used if there is a status quo, otherwise the mean of numeric parameters or the mode of choice parameters.
Return type: - model (
Table¶
Trace Plots¶
-
ax.plot.trace.generator_changes_scatter(generator_changes, y_range, generator_change_color=(141, 211, 199))[source]¶ Creates a graph object for the line(s) representing generator changes.
Parameters: Returns: - plotly graph objects for the lines representing generator
changes
Return type: go.Scatter
-
ax.plot.trace.mean_trace_scatter(y, trace_color=(128, 177, 211), legend_label='mean')[source]¶ Creates a graph object for trace of the mean of the given series across runs.
Parameters: Returns: plotly graph object
Return type: go.Scatter
-
ax.plot.trace.optimization_times(fit_times, gen_times, title='')[source]¶ Plots wall times for each method as a bar chart.
Parameters: Returns: AxPlotConfig with the plot
Return type: AxPlotConfig
-
ax.plot.trace.optimization_trace_all_methods(y_dict, optimum=None, title='', ylabel='', trace_colors=[(128, 177, 211), (251, 128, 114), (141, 211, 199), (188, 128, 189), (190, 186, 218), (253, 180, 98)], optimum_color=(253, 180, 98))[source]¶ Plots a comparison of optimization traces with 2-SEM bands for multiple methods on the same problem.
Parameters: - y – a mapping of method names to (r x t) arrays, where r is the number of runs in the test, and t is the number of trials.
- optimum (
Optional[float]) – value of the optimal objective. - title (
str) – Title for this plot. - ylabel (
str) – Label for y axis - trace_colors (
List[Tuple[int]]) – tuples of 3 int values representing RGB colors to use for different methods shown in the combination plot. Defaults to Ax discrete color scale. - optimum_color (
Tuple[int]) – tuple of 3 int values representing an RGB color. Defaults to orange.
Returns: plot of the comparison of optimization traces with IQR
Return type:
-
ax.plot.trace.optimization_trace_single_method(y, optimum=None, generator_changes=None, title='', ylabel='', trace_color=(128, 177, 211), optimum_color=(253, 180, 98), generator_change_color=(141, 211, 199))[source]¶ Plots an optimization trace with mean and 2 SEMs
Parameters: - y (
ndarray) – (r x t) array; result to plot, with r runs and t trials - optimum (
Optional[float]) – value of the optimal objective - generator_changes (
Optional[List[int]]) – iterations, before which generators changed - title (
str) – title of this plot - ylabel (
str) – Label for y axis - trace_color (
Tuple[int]) – tuple of 3 int values representing an RGB color. Defaults to orange. - optimum_color (
Tuple[int]) – tuple of 3 int values representing an RGB color. Defaults to orange. - generator_change_color (
Tuple[int]) – tuple of 3 int values representing an RGB color. Defaults to orange.
Returns: plot of the optimization trace with IQR
Return type: - y (
-
ax.plot.trace.optimum_objective_scatter(optimum, num_iterations, optimum_color=(253, 180, 98))[source]¶ Creates a graph object for the line representing optimal objective.
Parameters: Returns: plotly graph objects for the optimal objective line
Return type: go.Scatter